平成 20 年度 公益信託エスペック地球環境研究・技術基金助成研究報告書

研究テーマ

廃棄物焼却により生成するダイオキシン類の低減化に関する研究:共存有機物の影響

東京理科大学大学院 薬学研究科 薬学専攻 環境科学研究室 岸 智裕

1. 背景および目的

ダイオキシン類の大部分は塩素を含有する有機化合物の熱分解により発生し、都市廃棄物焼却からの排出が 実に80%以上を占めている。現在では800℃以上の高温で焼却し、さらにエンドオブパイプでの除去及びそ の残渣を高温溶融炉で分解することによって、環境中に排出されるダイオキシン類の濃度は低いレベルに抑え られている。しかし、高温での施設運営には莫大なエネルギーとコストがかかり、分解炉への輸送、作業時に おける漏洩などのリスクも伴う。これらの諸問題を解決するためには焼却炉からの発生そのものを削減するこ とが課題となる。

抑制技術の開発にはダイオキシン類生成メカニズムの解明が不可欠である。焼却炉からのダイオキシン類の 排出が報告されて以来、焼却炉及びその他の施設における加熱・焼却過程でのダイオキシン類の生成に関する 研究が数多く行われてきた。特に塩素化フェノール類はダイオキシン類の前駆物質と考えられており、温度、 酸素濃度、滞留時間などさまざまな条件下で焼却実験が行われた。また、実際の焼却炉には前駆物質だけでな く、さまざまな物質が共存しているため、それらの影響についても検討が行われている。これまでにも焼却炉 内に存在する金属(カルシウム、銅、鉄など)や窒素化合物、硫黄化合物といった共存物質の影響が報告されて きた。これらの物質はダイオキシン類生成反応に影響を及ぼし、触媒または抑制剤として作用することが報告 されている。これまでに多くの無機化合物についてダイオキシン類生成反応に及ぼす共存物質としての影響が 研究されてきたが、有機化合物に関する報告はほとんどない。焼却炉内には廃棄物や燃料といった形で多くの 有機物が投入され、その量は無機物よりも圧倒的に多い。これまで有機物はダイオキシン類の炭素供給源とい う考え方でとらえられていたが、これら有機物はダイオキシン類の前駆物質としてだけでなく、ダイオキシン 類生成反応に影響を与える可能性も十分考えられる。

我々はこれまでに、塩素化フェノール類の焼却に及ぼすさまざまな影響に関する検討から、共存有機物とし てフタル酸エステル類を混合させた場合にダイオキシン類の生成が顕著に減少することを発見した。しかし、 その抑制メカニズムについては不明な点が多く、解明には詳細なデータが必要となる。そこで本研究では、ダ イオキシン類の前駆物質として 2,4,6-trichlorophenol (2,4,6-T₃CP)、共存有機物としてフタル酸エステル類を 用いて、焼却時の温度、混合率、混合するエステルの種類などを変化させ、ダイオキシン類をはじめとする塩 素化芳香族化合物の生成に及ぼす共存有機物の影響を詳細に検討した。

2. 実験方法

2.1.試薬

焼却実験に用いたダイオキシン類前駆物質及び共存有機物をTable 1 に示した。焼却用試薬は予め GC/MS で分析し、不純物としてダイオキシン類を含まないことを確認した。アセトン、ヘキサン、ジエチルエーテル 及びトルエンは残留農薬・PCB 試験用(和光純薬)を、塩酸、塩化ナトリウム及び硫酸ナトリウム試薬特級 品(関東化学)を使用した。誘導体試薬は東京化成製の N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) を使用した。ダイオキシン類標準品は AccuStandard 製を用いた。

Category	Name	Abbreviation	Chemical formula	M.W.	m.p. (°C)	b.p. (°C)
dioxin precursor	2,4,6-trichlorophenol	2,4,6-T ₃ CP	C ₆ H ₃ Cl ₃ O	197.45	68	244.5
phthalate ester	di(2-ethylhexyl) phthalate	DEHP	$C_{24}H_{38}O_4$	390.56	-55	386
	phthalic anhy dride	PAnh	$C_8H_4O_4$	148.11	130.8	259
	diphenyl phthalate	DPhP	$C_{20}H_{14}O_4$	318.31	73	405(759 mmHg)
	dicy clohexy l p hthalate	DcHxP	$C_{20}H_{26}O_4$	332.40	66	225
	diethyl phthalate	DEP	$C_{12}H_{14}O_4$	222.23	-40.5	295
	di-n-butyl phthalate	DBP	$C_{16}H_{22}O_4$	278.34	-35	340
	di-n-hexyl phthalate	DHxP	$C_{20}H_{30}O_4$	334.46	-27.4	210(5 mmHg)
	di-n-octyl phthalate	DOP	$C_{24}H_{38}O_4$	390.56	-25	220(3.8 mmHg)
n-alkane	n-pentadecane	C15	C ₁₅ H ₃₂	212.41	10	270.5
	n-eicosane	C20	$C_{20}H_{42}$	282.54	36.5	205(15 mmHg)
	n-pentacosane	C25	C ₂₅ H ₅₂	352.67	53.3	282-4(40 mmHg)
	n-triacontane	C30	$C_{30}H_{62}$	422.80	65.9	235(1 mmHg)

Table 1. Optimized MS-MS parameters for the analysis of PCBzs, PCPs, PCDFs and PCDDs using the ion-trap mass analyzer Saturn 2200 MS.

M.W.: Molecular Weight, m.p.: melting point, b.p.: boiling point

2. 2. 焼却実験

焼却実験は Fig. 1 に示したモデル焼却装置を用いて行った。石英製反応管及び石英製サンプルボートをあ らかじめブンゼンバーナーを用いて空焼きし、妨害物質を除去した。試料を diethyl ether に溶解し、 (2,4,6-T₃CP:50 mmoll¹, 共存有機物:0.25-5 mmoll¹) 混合溶液を作成した。混合溶液をサンプルボートに 500 µl 投入し、溶媒を乾固させた後反応管中央に導き、空気気流中で3分間熱分解し、発生ガスは捕集管(氷 冷水 200 ml、エタノール 100 ml) に通した。このとき、気流速度を調節することで発生ガスの反応管内滞留 時間を約 10 秒に設定した。発生ガスを捕集した氷冷水は塩酸を加えて pH 2 とした後、塩化ナトリウム 15 g を加え diethyl ether 40 ml で 2 回抽出した。反応管及びサンプルボート上の残渣は acetone/n-hexane 溶液 (50:50, v/v)で超音波洗浄し、氷冷水からの抽出液と合わせた後に無水硫酸ナトリウムを加えて脱水した。ロー タリーエバポレーター及び窒素気流下で濃縮し、toluene に転溶した後内標準物質として phenantherene-d10 を添加し 1 ml に調整した。抽出サンプル 50 µl に BSTFA 50 µl を加えて誘導体化後、10 倍に希釈して分析用 試料とした。

Fig. 1. Schematic diagram of experimental apparatus used for combustion of samples.

2.3.分析装置及び測定条件

焼却実験で得られた抽出物はガスクロマトグラフ/質量分析法の使用により定性・定量分析を行った。 ガスクロマトグラフは Varian の VF-5ms キャピラリーカラム(長さ 30 m、内径 0.25 mm、膜厚 0.25 μ m) 装着の VARIAN CP-3800 型ガスクロマトグラフ及び VARIAN SATURN2200 を使用した。キャリアーガスと して He ガスを 1 mL min⁻¹の流速にし、試料注入口の温度は 280 °C とした。カラムオーブンは 40 °C で 5 分 間保持後、20 °C min⁻¹ の速度で 220 °C まで昇温し、さらに 8 °C min⁻¹ の速度で 300 °C まで昇温し 5 分保 持した条件で操作した。試料注入量は 1 μ L、注入モードはスプリットレスとした。マニホールド、トランス ファーライン及び MS イオン化室の温度はそれぞれ 80、285 及び 200 °C とした。イオン化電流は 300 μ A、 イオン化電圧は 70 eV の条件で操作した。

焼却生成物の定量はタンデムモード(MS/MS)で行った。それぞれの化合物のイオン化パラメータ、定量限 界値(LOQ)及び検出限界値(LOD)を Table 2 に示した。

Table 2. Optimized MS-MS parameter	s for the analysis of PCBzs, PCPs	, PCDFs and PCDDs using the ion-trap mass
analyzer Saturn 2200 MS.		

anaryzer Saturn 2200 WS.										
Compounds	$Precurs or ions (m\!/z)$	Waveform ty pe	Excitation storage level (m/z)	CID (V)	P roduct ions (m/z)	Microscans	$LOQ (ng ml^{-1})$	$LOD (ng ml^{-1})$		
DCBz	146	Non-Resonant	64.2	84	74	4	10	1		
T ₃ CBz	182	Non-Resonant	75.0	88	109	4	10	2		
T_4CBz	216	Non-Resonant	75.0	88	108	4	10	2		
P ₅ CBz	250	Non-Resonant	80.0	86	142	4	50	10		
phenol-TM S	151	Non-Resonant	66.4	76	93	4	10	1		
M CP-TM S	185	Non-Resonant	81.4	74	149	4	10	2		
DCP-TMS	219	Non-Resonant	96.5	74	183	4	10	2		
T ₃ CP-TMS	255	Non-Resonant	112.4	92	217	4	10	2		
T ₄ CP-TMS	289	Non-Resonant	110.0	80	251	4	20	5		
DF	168	Resonant	73.9	0.9	139	4	10	2		
M CDF	202	Resonant	89.0	0.8	139	4	10	5		
DCD F	236	Resonant	104.0	1.6	173	4	10	5		
T ₃ CDF	272	Resonant	119.9	2.1	209	4	10	5		
T ₄ CDF	306	Resonant	135.0	1.2	243	4	10	5		
P5CDF	340	Resonant	150.0	1.4	277	4	25	10		
DD	184	Resonant	81.0	0.8	128	4	10	2		
M CDD	218	Resonant	96.0	0.9	155	4	10	5		
DCD D	252	Resonant	111.1	0.6	189	4	10	5		
T ₃ CDD	288	Resonant	127.0	1.1	225	4	10	5		
T ₄ CDD	322	Resonant	142.0	1.6	249	4	10	5		
P5CDD	356	Resonant	157.1	1.6	293	4	25	10		
phenanthrene-d10	188	Non-Resonant	75.0	88	160	4	-	-		

CID: Collision-induced dissociation, LOQ: Limit of quantification, LOD: Limit of detection

3. 結果および考察

3.1 DEHPによるダイオキシン類生成抑制効果

まず、フタル酸エステル類のうち日本で最も多く使用されている DEHP を共存有機物として用い、 2,4,6-T₃CP をダイオキシン類前駆物質として DEHP 存在下と非存在下で焼却実験を行った。焼却温度は 450 °C から 850 °C とした。予備実験として DEHP を単独で焼却したサンプルを分析したが、DEHP の未変 化体を除き、焼却生成物と思われるピークは検出されなかった。このことから、本研究では DEHP 由来の焼 却生成物は無視できるものと考えられた。

2,4,6-T₃CP 単独及び DEHP を 2,4,6-T₃CP に対してモル比で 10%混合した試料を 650 °C で焼却した際の焼 却生成物から得られた特徴的なマスクロマトグラムを Fig. 2 に示した。2,4,6-T₃CP の単独焼却では二つの T₄CDD 異性体が主生成物として検出され、これらは標準品のリテンションタイムとの比較から 1,3,6,8-及び 1,3,7,9-T₄CDD と同定された。さらに、副生成物として T₄CDFs, P₅CDFs, T₃CDDs 及び P₅CDDs が検出された。一方、DEHP10%混合試料を焼却サンプルでは、2,4,6-T₃CP 単独と比べて T₄CDDs のピークエリアの顕著な減少が認められた。その他のダイオキシン類異性体のピークエリアも同様に減少したが、2,7-/2,8-DCDD 及び 2,8-DCDF は DEHP 混合試料の焼却物でのみ新たに検出された。

Fig. 2. Total ion chromatogram of the products formed during the combustion of 2,4,6-trichlorophenol alone (a) and DEHP 10% mixture (b) at 650 °C. Numbered peaks were (1) 2,7-/2,8-DCDD, (2) 2,8-DCDF, (3) T₃CDD, (4) 1,3,6,8-T₄CDF, (5) 2,4,6,8-T₄CDF, (6) 1,3,6,8-T₄CDD, (7) 1,3,7,9-T₄CDD, and (8) P₅CDD.

2,4,6-T₃CP に DEHP をモル比で 1%及び 10%混合した場合と混合しない場合について 500°C から 800°C で焼却実験を行い、出発物質の残存率及び主生成物である T₄CDDs の生成量を Fig. 3 に示した。

2,4,6-T₃CP に DEHP を 1%混合して焼却した場合、実験を行った全ての温度域で T₄CDDs 生成量の顕著な 減少が認められた。DEHP を 1%混合した場合における 650°C での T₄CDDs 生成量は 10.4 mmol mol⁻¹であ り、非混合時に比べて 56.4%減少した。DEHP を 10%混合した場合では T₄CDDs の生成量はさらに減少し、 650°C における抑制率は 98.0%であった。750°C においては非混合時の生成量がわずかなこともあり、生成 量に大きな差は認められなかった。一方 2,4,6-T₃CP の残存率は、焼却温度が同じ場合で比較すると DEHP 混 合試料のほうが高くなる傾向が見られた。650°C における 2,4,6-T₃CP 残存率は DEHP1%混合試料で 46.3%、 2,4,6-T₃CP 単独試料で 12.8%であった。この傾向は特に高温条件下で顕著であり、非混合時は 700°C でほぼ 全ての 2,4,6-T₃CP が分解したが、 DEHP10%混合試料では 750°C でも 2,4,6-T₃CP の残存が認められた。こ のことから共存有機物が存在することによって 2,4,6-T₃CP の分解及び二量体化が抑制される可能性が考えら れた。しかし、T₄CDDs の生成量が最大となる温度が 2,4,6-T₃CP 単独焼却では 650°C であったのに対し、10% では 750°C と高温側にシフトしたことから、共存物質が存在することによって PCDD/Fs の熱分解も妨げら れている可能性が考えられた。

Fig. 3. Residual ratio of 2,4,6-T₃CP (A) and the total yields of T_4 CDDs (B) formed during the combustion of 2,4,6-T₃CP in the presence or absence of DEHP, as a function of temperature.

次に、T₄CDDsの生成量が最大となる 650°Cの条件で DEHPの混合率を変えて焼却実験を行い、T₄CDDsの生成量に対する DEHPの混合率の量的依存性について検討した。出発物質の残存率及び T₄CDDsの生成量を Fig. 4 に示した。

DEHP の混合率を増加させるにつれて T₄CDDs の生成量が減少する傾向が認められた。このことから、 T₄CDDs 生成量の減少は確かに DEHP の混合によるものであることが示唆された。DEHP の混合率を増加さ せると総 PCDD/Fs 量も減少する傾向が認められたが、DEHP の混合率を増加させるにつれて T₄CDDs の抑 制率と総 PCDD/Fs の抑制率の差が開く傾向が認められた。これは、DEHP を混合した場合、高塩素化 PCDD/Fs の生成量は顕著に減少したが、低塩素化 PCDD/Fs の生成量が逆に増加したためである。

Fig. 4. Yields of PCDD/Fs obtained from the combustion of 2,4,6-T₃CP in the presence or absence of DEHP at 650 °C, as a function of the mixing ratio of DEHP.

DEHPの混合によって2,4,6-T₃CPからT₄CDDsが生成する反応とは異なる反応経路が優位となった可能性 が考えられたが、DEHP 混合時の反応経路を推測するためには主生成物以外の生成物に関する詳細なデータ が必要となる。そこで、PCBz、PCPs、PCDFs 及び PCDDs について焼却サンプル中の焼却生成物の定量を 行った。実験は 650°C で非混合時、DEHP を 1%及び 10%混合した場合について行い、その結果を Fig. 5 に 示した。

DEHP の混合によって、T₄CDDs のほかに T₄CBzs 、T₄CDFs、P₅CDFs、 T₃CDDs、及び P₅CDDs の生 成量減少が確認された。一方、DCBzs、T₃CBzs、DCPs 及び T₄CPs の生成量は DEHP の混合率に依存して 増加した。また、DEHP1%混合試料の焼却では 2-MCP、4-MCP 及び 2,8-DCDF が、さらに 10%混合試料の 焼却では phenol が新たに検出された。全体として、高塩素化化合物及び二量体の生成量は減少し、逆に低塩 素化化合物及び単量体の生成量は増加する傾向が認められた。混合率の増加につれてより塩素置換数の低い phenol 類が新たに検出されることから、DEHP の混合によって脱塩素化が促進される可能性が考えられた。 また、4-MCP を単独で焼却すると 2,8-DCDF が主に生成することがすでに知られている。このことから、混 合焼却で検出された 2,8-DCDF は 2,4,6-T₃CP の脱塩素化によって生じた 4-MCP を出発物質として生成した と考えられた。

Fig. 5. Distribution of PCBzs (A), PCPs (B), PCDFs (C) and PCDDs (D) congeners during combustion of 2,4,6-T₃CP with or without DEHP at 650°C.

以上のことから、DEHP の混合による PCDD/Fs 生成抑制のメカニズムとして二つの反応経路が考えられた。この反応経路を Fig. 6 に示した。

予想された抑制メカニズムの一つ目はフェノキシラジカル化の抑制である。フェノールの二量体化によるダ イオキシン骨格の生成は、水酸基から水素ラジカルがはずれることによるフェノキシラジカルの生成が第一段 階であると考えられている(Sidhu and Edwards, 2002)。本研究において、DEHP を混合して焼却した場合、 出発物質である 2,4,6-T₃CP の残存量が顕著に上昇することが確認された(Fig. 3-A)。これはフェノキシラジカ ルを経る分解ルートが抑制されたためであると考えられた。DEHP を焼却すると、まずエステル結合の開裂 が起こることが報告されている(Saido et al., 1977)。また、炭化水素の熱分解ではラジカル連鎖反応によって 爆発的に反応が進み、アルキルラジカルや水素ラジカルなどが生成する(Kaiser et al., 1983; George and Robert, 1984)。2,4,6-T₃CP の焼却時に DEHP が共存する場合、アルキル鎖の熱分解によって生成する水素ラ ジカルやアルキルラジカルが水素供与体として作用し、2,4,6-T₃CP のフェノキシラジカル化が抑制される可 能性が考えられた。

二つ目の予想抑制メカニズムは脱塩素化の促進である。本研究において、DEHPの混合率増加につれて、 より塩素置換数の少ない MCPs 及び phenolの生成が確認された。熱化学反応において塩素原子はラジカル置 換反応を受けやすく、水素ラジカルやアルキルラジカルが反応開始剤となって容易に脱塩素化が起こる。PCPs の焼却によって生成する PCDD/Fs 異性体は出発物質の種類によってある程度決まっており、低塩素化フェノ ールからは T4CDDs は生成しない。このことから、DEHPの混合によって脱塩素化反応が優位となり、T4CDDs の生成量が減少した可能性が考えられた。本研究では DEHP の混合によって DCDF の生成量が増加したが、 総 PCDD/Fs 量から考えるとわずかであり、全体量としては DEHP の混合によって PCDD/Fs は顕著に減少 したといえる。

> 1) Suppression of phenoxy radical formation $H \cdot Cl + Cl + Cl + Cl + Cl + Cl_5 + Cl_$

Fig. 6. Proposed pathways of the suppression of T₄CDDs during combustion of 2,4,6-T₃CP with co-existent organic compounds.

3.2.フタル酸エステル類によるダイオキシン類生成抑制効果に及ぼす側鎖構造及び側鎖長の影響

2,4,6-T₃CP の焼却時に DEHP を混合することによって PCDD/Fs 生成量が減少することを示し、さらに、 その抑制メカニズムの予想反応経路を示した。抑制効果は DEHP の気化・分解によって水素ラジカルやアル キルラジカルが発生し、2,4,6-T₃CP に作用するためと予想した。これが正しければ、側鎖の種類によって抑 制効果は大きく異なると考えられる。そこで、側鎖構造の異なるフタル酸エステルを共存有機物として用い、 その構造の違いが抑制効果に与える影響を検討した。混合するフタル酸エステルとして側鎖の炭素数が 6 で構 造が異なる三種類(Diphenyl phthalate; DPhP, Dicyclohexyl phthalate; DcHxP, Di-n-hexyl phthalate; DHxP)を用いた。また、フタル酸骨格のみの影響を見るために無水フタル酸(Phthalic anhydride; PAnh)も共 存有機物として用いた。2,4,6-T₃CP 単独及び 2,4,6-T₃CP に共存有機物をそれぞれモル比で 1%混合した試料 を 650°C で焼却した際の T₄CDDs の生成量を Fig. 7 に示した。

PAnh 混合試料の焼却では 24.8 mmol mol⁻¹の T₄CDDs が生成し、2,4,6-T₃CP を単独で焼却した時の T₄CDDs 生成量と比べて顕著な差は認められなかった。このことから、どのような物質を混合した場合でも抑制効果が見られるわけではなく、特定の構造をもつ物質のみが抑制効果を示すことが示唆された。また、フタル酸骨格は PCDD/Fs 生成抑制効果に寄与せず、抑制効果は側鎖に起因すると考えられた。側鎖の炭素数が 6 のフタル酸エステル三種について T₄CDDs 生成抑制率を比較すると、フェニル基(DPhP)≪シクロヘキシル基 (DcHxP)

フタル酸エステルの混合による PCDD/Fs 生成抑制効果がフタル酸エステルの側鎖に起因し、側鎖がノルマ ルアルカンの場合に最も抑制効果が大きいことを示した。この結果から、抑制効果には側鎖炭化水素の量が大 きく影響することが予想される。そこで、側鎖がノルマルアルカンで炭素数が2から8のフタル酸エステル を用いて側鎖長の影響について検討した。2,4,6・T₃CP 単独及び2,4,6・T₃CP に共存有機物をそれぞれモル比で 1%混合した試料を650°C で焼却した際の結果を Fig.8に示した。

側鎖炭素数2のDEPを1%混合した場合には若干のT4CDDs生成量減少が認められ、その抑制率は35.4%

であった。一方、側鎖炭素数が8のDOPを混合した場合に最も抑制率が高く、その抑制率は67.4%であった。 フタル酸エステルの側鎖炭素数が増加するにつれて抑制率は大きくなる傾向が認められた。これは、共存する 炭素鎖の量が増えることで分解によって生成する水素ラジカルやアルキルラジカルの量が増大したためと考 えられた。このことから、共存有機物によるPCDD/Fs抑制効果は炉内に共存する炭素鎖の量に影響を受ける 可能性が示唆された。

Fig. 7. Total yields of T₄CDDs and PCDD/Fs during combustion of 2,4,6-T₃CP with phthalate esters or phthalic acid anhydride at 650°C. Mixing ratio of phthalate esters was 1% in molar ratio.

Fig. 8. Total yields of T₄CDDs and PCDD/Fs during combustion of 2,4,6-T₃CP with straight-chain phthalate esters at 650°C. Mixing ratio of phthalate esters was 1% in molar ratio.

3.3.直鎖炭化水素によるダイオキシン類生成抑制効果に及ぼす鎖長の影響

フタル酸エステルの混合によってダイオキシン類の生成量が減少すること、その抑制作用はフタル酸エステ ルの分子内構造のうち側鎖に起因しノルマルアルカンを側鎖に持つフタル酸エステル類で抑制効果が大きい こと、さらに側鎖が長いほど抑制効果が大きいことを報告した。このことから分子構造内に炭化水素鎖を持つ 化合物は同様の効果を発揮する可能性が考えられた。炭素鎖を分子構造内にもつ化合物は数多くあるが、もっ とも単純な鎖状炭化水素は重油の主成分であり、焼却炉の立ち上げ、温度維持の際に燃料として大量に焼却炉 に投入されるため、共存有機物として影響を検討すべき物質であると考えられる。

まず重油成分中に多く含まれている n-pentacosane(C25)に着目し、500-850°C での焼却過程におけるフェ ノール類からのダイオキシン類生成反応に及ぼす炭化水素の影響を検討した。さらに、鎖長の異なる炭化水素 を混合して実験を行い、炭素鎖長がダイオキシン類生成抑制作用に及ぼす影響についても検討した。

C25を混合した場合もT₄CDDsをはじめとする高塩素化PCDD/Fsのピーク面積が減少し、phenolやMCPs といった2,4,6-T₃CPの脱塩素化体が新たに検出された。これはDEHPを混合した場合と同様の傾向であった。 また、2,4,6-T₃CPの単独焼却では検出されないが、C25を混合した場合に検出された化合物はDEHPを混合 した場合のそれとほぼ同様であった。このことから、フタル酸エステルの共存による PCDD/Fs 生成抑制と C25の共存によるそれは同じメカニズムによるものと考えられた。低塩素化フェノールなどの脱塩素化体の増 加が認められたが、この塩素原子は水素ラジカルやアルキルラジカルによって引き抜かれ、塩化水素や塩素化 炭化水素として排出されたと考えられた。しかし、本研究における分析条件では短鎖の塩素化炭化水素などの 低沸点化合物は分析できなかった。

2,4,6-T₃CP に C25 をモル比で 1%及び 10%混合した場合、または混合しない場合について焼却実験を行った。出発物質の残存率及び主生成物である T₄CDDs の生成量を Fig. 9 に示した。

2,4,6-T₃CPの焼却時に C25 を混合した場合もフタル酸エステルを混合した場合と同様、T₄CDDsの生成量

が減少した。650°C における抑制率は C25 を 1%混合した場合で約 35%、10%混合した場合で約 85%であっ た。C25 の混合による PCDD/Fs 抑制率は DEHP を混合した場合と比べて同等か若干低い程度であった。 DEHP の側鎖炭素数は合計で 16 であり、C25 のほうが多い。直鎖アルキルエステルを混合した場合に炭素鎖 が長いほうが高い抑制率を示す傾向から、抑制率は共存する炭素量に依存する可能性を示したが、この結果は その予想とは異なる結果であった。DEHP は炭素鎖がエステル結合で結合しているため反応性が高く、分解 が起こりやすい。また、DEHP はアルキル鎖が二つに分かれており、それぞれの炭素数は 8 である。炭化水 素は鎖長が短いほど分解反応が進みやすいので、これら二つのことから DEHP の炭素鎖のほうが分解しやす いと考えられた。2,4,6-T₃CP の二量体化反応に対して長鎖炭化水素が作用するとは考えにくく、短鎖アルキ ルもしくは水素の状態で反応に関与する可能性が高い。そのため、共存有機物による PCDD/Fs 生成抑制作用 に対しては炭素鎖の量に加えてその分解の起こりやすさも影響する可能性が考えられた。

Fig. 9. Residual ratio of 2,4,6-T₃CP (A) and total yields of T₄CDDs (B) during combustion of 2,4,6-T₃CP with or without C25, as a function of temperature.

C25 の混合によって PCDD/Fs の生成量が減少することを示したが、n-アルカンもフタル酸エステルの場合 と同様、アルキル鎖の長さの影響を大きく受けることが予想される。そこで、n-アルカンのうち、炭素数 15、 20、25 及び 30 の直鎖炭化水素を共存有機物として 2,4,6-T₃CP に混合し、PCDD/Fs 抑制効果に対するアル キル鎖長の影響について検討した。共存有機物の混合率はモル比で 1%に統一して実験を行った。各試料を 650°C で焼却した際の 2,4,6-T₃CP の残存率、T₄CDDs 及び PCDD/Fs の生成量を Fig. 10 に示した。

炭素数 15 から 25 までは炭素鎖の長さによらずほぼ同程度の T₄CDDs 抑制率であったが、炭素鎖が長いほ うが若干抑制率が大きい傾向が認められた。しかし、炭素数が 30 になるとこの傾向は逆転し、抑制率は減少 した。これは、炭素鎖が長いと気化・分解までに時間がかかるため、2,4,6-T₃CP が気化し、縮合反応が起こ るまでに抑制効果を発揮する炭素鎖分解物が生成できなかったからであると考えられた。Fig. 10 に示した実 験では炭化水素の混合率をモル量で統一したが、この場合では炭素鎖の違いによって燃焼炉内に投入された重 量及び炭素原子数が大きく異なるので側鎖の違いによる影響を正確に評価することは難しいと考えられた。そ こで、混合量をモル量ベースから重量ベースに変更し、共存有機物の混合量を 125 µg に統一して焼却実験を 行った。この混合量は C15 をモル比で約 2.5%、C30 では約 1%混合した場合の混合量に相当する。各試料を 650°C で焼却した際の 2,4,6-T₃CP の残存率、T₄CDDs 及び PCDD/Fs の生成量を Fig. 11 に示した。

重量当たりの T₄CDDs 抑制率は炭素鎖が短いほど大きい傾向が認められた。C30 を混合した場合は 41.4% であるのに対し、C15 を混合した場合の抑制率は約 91.9%で、実験を行った 4 つの炭化水素の中で最大となった。これは、炭素鎖が短いほうが気化・分解が速やかに起こり、水素ラジカルやアルキルラジカルなどの

PCDD/Fs 生成反応を抑制する物質が生成しやすいためと考えられた。結果は示していないが、炭化水素を単 独で焼却した場合、炭素鎖の長さが長くなるにつれて残存率は大きくなり、分解が起こりにくいことが分かっ ている。また、Watanabeら(2000)が提唱した直鎖炭化水素の分解速度モデルを用いた計算では、C15の分解 速度は C25 に比べて約 2.4 倍である。分解の起こりやすい短鎖炭化水素ほど抑制効果が大きいことから、共 存有機物の混合による PCDD/Fs の抑制率は混合したアルキル鎖の重量もしくは炭素量よりも炭化水素の分 解によって生成する水素ラジカルやアルキルラジカル量に大きく依存する可能性が示唆された。

Fig. 10. Total yields of T₄CDDs and PCDD/Fs during combustion of 2,4,6-T₃CP with n-alkane at 650°C. The mixing ratio of 2,4,6-T₃CP and co-existent organic compounds were 100:1 by molar.

Fig. 11. Total yields of T_4 CDDs and PCDD/Fs during combustion of 2,4,6- T_3 CP with 125 µg of n-alkane at 650°C.

4. まとめ

本研究の結果から、焼却炉内に存在する重油などの有機物がフェノール類を前駆物質とする気相中での PCDD/Fs 生成を抑制している可能性が示唆された。分子内構造中にアルキル基を含む化合物はフタル酸エス テル類や n-アルカンのほかにも界面活性剤など多くの物質があり、これらが焼却炉内に共存する場合にも同 様に PCDD/Fs の抑制効果が発揮されると予想される。本研究で得られた共存有機物の影響に関する知見は実 際の焼却炉内で起こっているダイオキシン類生成反応を解明する上で非常に重要であると考えられる。そのた め、今後も本研究を基に、異なる構造をもつ有機物や有機物の焼却によって生成するガス状低分子化合物がダ イオキシン類生成反応に及ぼす影響についても検討していく必要がある。

5. 謝辞

本研究を遂行するにあたり、資金面でのご支援をいただきました「公益信託エスペック地球環境研究・技術 基金」に深く感謝いたします。

引用文献

- George W.M. and Robert N.H., Pyrolysis of organic compounds containing long unbranched alkyl groups. *Ind. Eng. Chem. Fundam.* 1984, 23, 288-294.
- Kaiser E.W., Rothschild G. and Lavoie G.A., Effect of fuel-air equivalence ratio and temperature on the structure of laminar propane-air flames. *Combust. Sci. Technol.* 1983, 33, 123-134.

- Saido K., Satomi M., Kirisawa M., Kuroki T., Kubo T., Watabe T. and Ikemura T., Studies on thermal decomposition of phthalic esters. I.: Thermal decomposition of bis (2-ethylhexyl) phthalate. *Yakugaku Zasshi-J. Pharm. Soc. Jpn.* 1977, 97, 479-485.
- Sidhu S. and Edwards P., Role of phenoxy radicals in PCDD/F formation. Int. J. Chem. Kinet. 2002, 34, 531-541.
- Watanabe M., Tsukagoshi M., Hirakoso H., Adschiri T. and Arai K., Kinetics and product distribution of n-hexadecane pyrolysis. *AICHE J.* 2000, 46, 843-856.

本助成研究に基づく成果

学会発表

- 1) <u>岸 智裕</u>,鈴木翔太,河上強志,小野寺祐夫
 焼却過程におけるダイオキシン類の生成と抑制
 第52回日本薬学会関東支部大会,野田,2008年10月
- 2) <u>岸 智裕</u>,鈴木翔太,河上強志,小野寺祐夫 焼却過程でのダイオキシン類生成抑制に寄与する共存有機物の化学構造 フォーラム 2008:衛生薬学・環境トキシコロジー,熊本,2008年11月
- 3) 高木麻衣, <u>岸 智裕</u>, 鈴木翔太, 河上強志, 小野寺祐夫 低塩素化フェノール類の熱分解によるダイオキシン類生成に及ぼす共存有機物の影響 日本薬学会第129年会, 京都, 2009年3月
- 4) <u>岸 智裕</u>,鈴木翔太,河上強志,武田 健,小野寺祐夫
 塩素化フェノール類の焼却過程におけるダイオキシン類生成反応に及ぼす炭化水素化合物の影響
 第18回環境化学討論会,つくば,2009年6月
- 5) <u>Tomohiro Kishi, Shota</u> Suzuki, Tsuyoshi Kawakami, Ken Takeda and Sukeo Onodera Suppression of PCDD/Fs formations by addition of hydrocarbons during combustion of chlorinated phenols DIOXIN 2009: 29th International Symposium on Halogenated Persistent Organic Pollutants (POPs),

Beijing, Aug. 2009.

6) <u>岸 智裕</u>,江川隼人,鈴木翔太,武田 健,小野寺祐夫 焼却過程におけるダイオキシン類の共存有機物による生成抑制効果:炉内酸素濃度の影響 フォーラム 2009:衛生薬学・環境トキシコロジー,沖縄,2008年11月 (発表予定)

投稿論文

1) <u>Tomohiro Kishi</u>, Toshinori Shinkura, Shota Suzuki, Tsuyoshi Kawakami, Ken Takeda and Sukeo Onodera, Suppression of PCDD/Fs formation because of the presence of DEHP during the combustion of 2,4,6-trichlorophenol. *Chemosphere* (投稿中)